Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Future Healthc J ; 9(3): 262-267, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2203504

ABSTRACT

There is little understanding about what proportion of the target audience have read guidelines published through the traditional approach. The COVID-19 pandemic created a particularly difficult scenario for healthcare professionals (HCP) since the evidence base rapidly changed. In response, we established a freely accessible, video-based online resource, which was formally implemented requiring user registration. The guideline rapidly gained more than 4,500 registrants in the first wave alone, including nearly 100% of respiratory, intensive care or emergency unit consultants in Wales. During the first wave, there were nearly 170,000 page views with over 31,000 video plays and an average of 5.8 visits to the site per registrant. Acceptability using an online survey showed widespread support and that the unsubscribe rates were remarkably low. We suggest that this novel approach to guideline implementation achieved its aim of widespread engagement and acceptability and serves as a potential model for future medical guidelines and education beyond COVID-19.

2.
Trials ; 23(1), 2022.
Article in English | EuropePMC | ID: covidwho-2034455

ABSTRACT

Kidney transplant recipients are at an increased risk of severe COVID-19-associated hospitalisation and death. Vaccination has been a key public health strategy to reduce disease severity and infectivity, but the effectiveness of COVID vaccines is markedly reduced in kidney transplant recipients. Urgent strategies to enhance vaccine efficacy are needed. Methods: RIVASTIM-rapamycin is a multicentre, randomised, controlled trial examining the effect of immunosuppression modification prior to a third dose of COVID-19 vaccine in kidney transplant recipients who have failed to develop protective immunity to a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to either remain on standard of care immunosuppression with tacrolimus, mycophenolate, and prednisolone (control) or cease mycophenolate and commence sirolimus (intervention) for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm who develop protective serological neutralisation of live SARS-CoV-2 virus at 4–6 weeks following a third COVID-19 vaccination. Secondary outcomes include SARS-CoV-receptor binding domain IgG, vaccine-specific immune cell populations and responses, and the safety and tolerability of sirolimus switch. Discussion: Immunosuppression modification strategies may improve immunological vaccine response. We hypothesise that substituting the mTOR inhibitor sirolimus for mycophenolate in a triple drug regimen will enhance humoral and cell-mediated responses to COVID vaccination for kidney transplant recipients. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12621001412820. Registered on 20 October 2021;https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382891&isReview=true

3.
Cell Rep Med ; 3(6): 100651, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1873330

ABSTRACT

Coronavirus disease 2019 (COVID-19) convalescents living in regions with low vaccination rates rely on post-infection immunity for protection against re-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluate humoral and T cell immunity against five variants of concern (VOCs) in mild-COVID-19 convalescents at 12 months after infection with ancestral virus. In this cohort, ancestral, receptor-binding domain (RBD)-specific antibody and circulating memory B cell levels are conserved in most individuals, and yet serum neutralization against live B.1.1.529 (Omicron) is completely abrogated and significantly reduced for other VOCs. Likewise, ancestral SARS-CoV-2-specific memory T cell frequencies are maintained in >50% of convalescents, but the cytokine response in these cells to mutated spike epitopes corresponding to B.1.1.529 and B.1.351 (Beta) VOCs were impaired. These results indicate that increased antigen variability in VOCs impairs humoral and spike-specific T cell immunity post-infection, strongly suggesting that COVID-19 convalescents are vulnerable and at risk of re-infection with VOCs, thus stressing the importance of vaccination programs.


Subject(s)
COVID-19 , T-Lymphocytes , Antibodies, Neutralizing , Antibodies, Viral , Humans , Reinfection , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Front Immunol ; 12: 744696, 2021.
Article in English | MEDLINE | ID: covidwho-1485054

ABSTRACT

Background: Little is known about the mortality of hospital-acquired (nosocomial) COVID-19 infection globally. We investigated the risk of mortality and critical care admission in hospitalised adults with nosocomial COVID-19, relative to adults requiring hospitalisation due to community-acquired infection. Methods: We systematically reviewed the peer-reviewed and pre-print literature from 1/1/2020 to 9/2/2021 without language restriction for studies reporting outcomes of nosocomial and community-acquired COVID-19. We performed a random effects meta-analysis (MA) to estimate the 1) relative risk of death and 2) critical care admission, stratifying studies by patient cohort characteristics and nosocomial case definition. Results: 21 studies were included in the primary MA, describing 8,251 admissions across 8 countries during the first wave, comprising 1513 probable or definite nosocomial COVID-19, and 6738 community-acquired cases. Across all studies, the risk of mortality was 1.3 times greater in patients with nosocomial infection, compared to community-acquired (95% CI: 1.005 to 1.683). Rates of critical care admission were similar between groups (Relative Risk, RR=0.74, 95% CI: 0.50 to 1.08). Immunosuppressed patients diagnosed with nosocomial COVID-19 were twice as likely to die in hospital as those admitted with community-acquired infection (RR=2.14, 95% CI: 1.76 to 2.61). Conclusions: Adults who acquire SARS-CoV-2 whilst already hospitalised are at greater risk of mortality compared to patients admitted following community-acquired infection; this finding is largely driven by a substantially increased risk of death in individuals with malignancy or who had undergone transplantation. These findings inform public health and infection control policy and argue for individualised clinical interventions to combat the threat of nosocomial COVID-19, particularly for immunosuppressed groups. Systematic Review Registration: PROSPERO CRD42021249023.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Hospitalization , Immunocompromised Host , Inpatients , SARS-CoV-2 , Adult , COVID-19/therapy , Disease-Free Survival , Humans , Risk Factors , Survival Rate
6.
Thorax ; 76(12): 1246-1249, 2021 12.
Article in English | MEDLINE | ID: covidwho-1322847

ABSTRACT

The burden of nosocomial SARS-CoV-2 infection remains poorly defined. We report on the outcomes of 2508 adults with molecularly-confirmed SARS-CoV-2 admitted across 18 major hospitals, representing over 60% of those hospitalised across Wales between 1 March and 1 July 2020. Inpatient mortality for nosocomial infection ranged from 38% to 42%, consistently higher than participants with community-acquired infection (31%-35%) across a range of case definitions. Those with hospital-acquired infection were older and frailer than those infected within the community. Nosocomial diagnosis occurred a median of 30 days following admission (IQR 21-63), suggesting a window for prophylactic or postexposure interventions, alongside enhanced infection control measures.


Subject(s)
COVID-19 , Cross Infection , Adult , Cross Infection/epidemiology , Hospitals , Humans , Retrospective Studies , SARS-CoV-2 , Wales/epidemiology
8.
Anal Chem ; 93(5): 2767-2775, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039622

ABSTRACT

Clinical tissue specimens are often unscreened, and preparation of tissue sections for analysis by mass spectrometry imaging (MSI) can cause aerosolization of particles potentially carrying an infectious load. We here present a decontamination approach based on ultraviolet-C (UV-C) light to inactivate clinically relevant pathogens such as herpesviridae, papovaviridae human immunodeficiency virus, or SARS-CoV-2, which may be present in human tissue samples while preserving the biodistributions of analytes within the tissue. High doses of UV-C required for high-level disinfection were found to cause oxidation and photodegradation of endogenous species. Lower UV-C doses maintaining inactivation of clinically relevant pathogens to a level of increased operator safety were found to be less destructive to the tissue metabolome and xenobiotics. These doses caused less alterations of the tissue metabolome and allowed elucidation of the biodistribution of the endogenous metabolites. Additionally, we were able to determine the spatially integrated abundances of the ATR inhibitor ceralasertib from decontaminated human biopsies using desorption electrospray ionization-MSI (DESI-MSI).


Subject(s)
Decontamination/methods , Ultraviolet Rays , Animals , Azetidines/analysis , Azetidines/therapeutic use , COVID-19/pathology , COVID-19/virology , Head and Neck Neoplasms/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Male , Metabolome , Naphthalenes/analysis , Naphthalenes/therapeutic use , Photolysis/radiation effects , Rats , Rats, Wistar , SARS-CoV-2/isolation & purification , SARS-CoV-2/radiation effects , Spectrometry, Mass, Electrospray Ionization/methods , Terfenadine/chemistry , Virus Inactivation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL